
Abstract— Localization systems based on Received Signal 

Strength Indicator (RSSI) exploit fingerprinting (based on 

extensive signal strength measurements) to calibrate the system 

parameters. This procedure is very expensive in terms of time as 

it relies on human operators. In this paper we propose a virtual 

calibration procedure which only exploits the measurements of 

the RSSI between pairs of anchors. In particular we propose two 

heuristics for virtual calibration and we evaluate their 

performance with respect to an ad-hoc calibration campaign by 

performing measures in an indoor environment with an IEEE 

802.15.4 sensor network.
1 

I. INTRODUCTION 

Localization is an important building block of context-aware 

system as witnessed in [1]. The general solution based on 

Global Positioning System (GPS) is unfortunately available 

only in outdoor environments. In indoor environment a viable 

solution to localization of users exploits wireless sensor 

networks [2]. Sensor network-based solutions estimate the 

(unknown) location of mobile sensors (placed on the users) 

with respect to a set of fixed sensor (called anchors), whose 

position is known, by estimating the distances between the 

mobile node and a set of anchors. Once these distances are 

known a standard multilateration technique or other methods 

[3] can be used to determine the mobiles position. This means 

that the localization problem reduces to the determination of 

the distances between arbitrary pairs of sensor nodes. A 

simple and widely used way to estimate distances is based on 

RSSI [4-6] that does not require complex hardware. In [4] the 

authors suggest that algorithms that estimate distances 

between two wireless devices based on their reciprocal RSSI 

are unable to capture the myriad of effects on signal 

propagation in an indoor environment. Nevertheless, because 

of RSSI does not require a special or a sophisticated hardware, 

but rather it has become a standard feature in most wireless 

devices, RSSI-based localization techniques have received 

considerable research interest. As a matter of fact, in [5] the 

authors have shown that despite the reputation of RSSI as a 

coarse method to estimate range, it can achieve an accuracy of 

about 1.5m RMS in a test bed experiment. Fading outliers can 

still impair the RSSI relative location system, implying the 

need for a robust estimator. A method to improve the quality 

of localization exploiting a number of RSSI measurements 

averaged in a time window to counteract interference and 

fading has been proposed in [6]. Moreover, RSSI has been 
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used in the RADAR [7] and in the Cricket [8] systems that can 

achieve a location granularity of 1.2 meters x 1.2meters. 

The distance estimation techniques exploiting RSSI rely on a 

radio propagation model. In indoor environment these models 

also take into account parameters such as the wall attenuation 

factor (WAF) and floor attenuation factors (FAF) to model the 

effect of walls and floors on the radio waves. Unfortunately, 

RSSI is environment dependent, moreover in indoor 

environments, the wireless channel is very noisy and the radio 

frequency signal can suffer from reflection, diffraction and 

multipath effect, which makes the signal strength a complex 

function of distance. To overcome these problems, wireless 

location systems uses a priori calibration of the propagation 

model (called fingerprinting). This calibration works in two 

phases: the training phase and the estimation phase. In the 

training phase it is measured the RSSI at a grid of points in the 

area of interest, and in the estimation phase this information is 

used to estimate the propagation model parameters. Clearly, 

the accuracy of the calibration procedure depends on the 

number of points in the grid and to the number of measures 

taken per point. This procedure is very expensive in terms of 

time as it requires human intervention, which is a practical 

barrier to its wider adoption. 

In this paper we use the same propagation model proposed in 

[3] which we assume to be valid, and we consider a virtual 

calibration procedure which only exploits the measures of the 

RSSI between pairs of anchors. In particular we propose two 

heuristics for virtual calibration and we evaluate their 

performance with respect to an ad-hoc calibration campaign 

by performing measures in an indoor environment with an 

IEEE 802.15.4 sensor network. We show that the performance 

of virtual calibration in terms of accuracy of the estimated 

distances is close to that achievable with more expensive, ad-

hoc calibration procedures, and it is thus a viable alternative to 

simplify the calibration of a localization system. 

II. THE WIRELESS SYSTEM MODEL 

In this paper we assume a localization system comprising a set 

of anchors A = {a1, a2… an}, a set of mobile nodes M = {m1, 

m2… mp} and a localization server L. The anchors have well 

known position on the map, identified by the pair (xi, yi). Each 

anchor periodically emits a beacon packet containing its 

identifier. The mobile nodes are those which need to be 

localized by the system. To this purpose a mobile node 

receives the beacons from the anchors, for each beacon 

computes the corresponding RSSI, and sends to the 

localization server the pair <RSSI, anchor id>. The 
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localization server accumulates all the pairs of each mobile 

node and estimates the position of the mobiles exploiting a 

suitable propagation model. 

The propagation model is used to calculate the expected RSSI 

map of the building. The RSSI map is evaluated only for a 

grid of points. For each point of the grid with coordinates (x, 

y), the map provides an n-dimensional vector S(x,y)!"n
 

defined as S(x,y) = {s1, s2… sn} where si is the expected RSSI 

value from anchor ai. Figure 1 shows an example of 

deployment of the anchors in a building. 

III. INDOOR PROPAGATION MODEL FOR IEEE 802.15.4 

The large-scale path loss model considered in this paper is 

summarized in this Section. Most researchers model the 

indoor path loss with the one-slope model [5], which assumes 

a linear dependence between the path loss (dB) and the 

logarithm of the distance d between the transmitter and the 

receiver: 

L d( )
db
= l0 +10! log10 d( )  (1) 

where l0 is the path loss at a reference distance of 1 meter 

(thought the paper we express distances in meters) and ! is the 

power decay index (also called path loss exponent). A 

generalization of the one-slope model is the two-slope model 

suggested by [9] to approximate the two-ray propagation 

model. 

The two-slope model is characterized by a break point that 

separates the various properties of propagation in near and far 

regions relative to the transmitter. In fact, the path loss 

exponent changes when the distance d is greater than the 

break point. In particular, the authors in [9] describe the 

existence of a transition region where the break point b is such 

that: 
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where ht is the transmitter antenna height, hr is the receiver 

antenna height, and " is the wavelength of the radio signal. 

However, in a typical sensor network scenario, the break point 

distance is hundreds of meters, therefore in practice the one-

slope and the two-slope models are equivalent in indoor 

scenarios where the rooms are only a few square meters in size. 

Although the one-slope model is simple to use, it does not 

adequately account for the propagation characteristics in 

indoor environments. In fact, a further generalization of the 

one-slope model consists in adding an attenuation term due to 

losses introduced by walls and floors penetrated by the direct 

path: 

L d( )
db
= l0 +10! log10 d( ) +WAF + FAF  (3) 

where FAF is the floor attenuation factor and WAF is the wall 

attenuation factor expressed as: 

WAF = k
i
l
i

i=1

N

!  (4) 

where ki is the number of penetrated walls of type i, and li is 

the attenuation due to the wall of type i. Since the sensor 

devices were located on the same floor, the attenuation term 

due to the propagation among different floors was not 

included in (3). 

A similar model was proposed in [3]. In their model they 

introduce a multi-wall component. This factor also includes 

the number of normal and fireproof doors and their status 

(open/closed) met by the direct paths. 

We observe that these parameters are important for the IEEE 

802.11 based localization, due to the lower density of the 

Access Points (the anchors of the system) deployed in the 

indoor environment. This result in a cumbersome system to 

handle for the end-user, since the status of the doors needs to 

be frequently updated. In our case we deal with a high anchor 

density and the anchors have a reduced radio communication 

range, thus the number of doors affecting direct paths is very 

low. For this reason we neglect the door status and we use a 

simplified model. 

IV. CALIBRATION PROCEDURES 

The objective of the calibration is to adapt the theoretical 

propagation model to the environment where it is actually 

used. Due to the dynamics of the channel, which essentially 
capture the spatial-temporal variations of wireless fading 
events, an automatic calibration procedure increases the 

performance of the localization systems. Virtual calibration 

procedure achieves this goal without human intervention, by 

exploiting only information obtained from the anchors. In 

particular, the anchors preliminary exchange beacons to 

compute reciprocal RSSI and the localization server uses this 

information to configure the parameters of the theoretical 

propagation model. 

The parameters of the propagation model (3) are: l0 (the path 

loss at distance of 1 meter), ! (the air attenuation factor), and li 

(the attenuation factor for the wall of type i). Since l0 should 

be estimated in a free space and it is not affected by the 

environment, it only depends on physical properties of the 

devices hardware and it can be estimated a priori, thus it is not 

object of virtual calibration. 

To calibrate parameters ! and li we propose two heuristics: 

global virtual calibration (G-procedure) and per-wall virtual 

calibration (W-procedure) comparing these with an ad-hoc 

calibration (H-procedure). G-procedure assigns the same 

parameters for every wall, based on all RSSI measures 

obtained from any pair of anchors. Instead, W-procedure 

provides an attenuation factor for the walls that directly affect 

the communication between specific pairs of anchors, and it 

uses G-procedure for all the other walls. The H-procedure, 

which has been used in many previous works [5, 10], exploits 

 
Fig. 1.  Map of the building used for the experiments. 



the RSSI measurements on a grid of points in the environment 

to estimate the propagation model parameters. 

Hereafter we use the following notation: 

! C = {(ai, aj)!A : ai and aj can communicate directly} 

! Ri = {aj1, aj2,…, ajn} is the set containing the id of all 

anchors in the same room, hence "(a, b) ! Ri : a#b the 

communication between a and b is “wall-free”; 

! Wn is the set of all pairs (ai,aj) such that the communication 

channel between ai and aj crosses exactly n wall(s); 

A. Global virtual calibration 

The G-procedure considers a single virtual type of wall. This 

leads (3) to: 

L(d)
db
= l0 +10! log10 d( ) + klw  (5) 

where k identifies the number of wall crossed by the signal 

and lw is the attenuation introduced by the wall on the signal. 

During the virtual calibration phase we can estimate all the 

required parameters (l0, !, lw). 

Substituting d(i,j) as actual distance between anchors ai and aj, 

and k(i,j) as the number of wall crossed by the direct path 

between anchors ai and aj in (5), we want to obtain an 

estimation RSSI"(i,j) of actual RSSI: 

RSS ! I 
i ,j( ) = l0 "10# log10 d

i ,j( )( ) + k
i ,j( ) lw

                   $i, j : ai ,a j( ) % C
 (6) 

The estimated RSSI"(i,j) differs from the measured RSSI(i,j) by 

an error component #(i,j). We assume that all #(i,j) are identically 

distributed and uncorrelated among themselves. Recalling that 

l0 is estimate a priori (see Section IV), and according to [11], 

the approximation of the remaining parameters (!,lw) that 

minimizes the least mean square error !RSSI " RSSI"!2 can be 

achieved by direct method. The computation cost for direct 

method solving a linear least mean square estimator problem 

is polynomial [11]. 

B. Per-wall virtual calibration 

With this technique we estimate an individual attenuation 

factor for each wall between any pair of anchors belonging to 

C. Let us assume there are q different types of wall in the map 

of the building and let F = {f1, f2… fq} the set of attenuation 

factors for each type of wall. Thus the equation (6) building 

the linear system becomes: 

RSS ! I 
i ,j( ) = l0 "10# log10 d

i ,j( )( ) + k
h i ,j( ) fh

h=1

q

$

                    %i, j : ai ,a j( ) & C

 (7) 

where kh(i,j) is the wall number of type h crossed by signal 

considering the direct path anchors ai and aj in (5). The path 

loss exponent ! used in this equation is previously evaluated 

with the G-procedure. Instead the evaluation of parameters fi 

!F is achieved with the same methodology used in Subsection 

A, by means of the least mean square estimator. 

V. SIMULATION AND RESULTS 

As observed in [3] the measured RSSI is function of the path 

loss and of the wall attenuation factor, which can be estimated 

with the above calibration technique. Furthermore, transmit 

powers will vary as batteries become depleted. This implies 

that the parameters change during the sensors’ lifetime. 

In this section we present the results of a measurement 

campaign aimed at comparing the performance of the three 

heuristics proposed in the previous section. 

We performed a two phases of measurements, each aimed at 

(1) performing the calibration of the propagation model using 

the three different procedure, namely: H-procedure, G-

procedure, and W-procedure, and (2) measuring the RSSI on a 

grid of points in the environment, to compare the localization 

error performance of the procedures. 

We use the H-procedure as reference technique, and we 

evaluate the performance of the two virtual calibration 

techniques in terms of the following formula: 

!G = stdclb RSSI( ) " slfclbG RSSI( )
2
 (8) 

!W = stdclb RSSI( ) " slfclbW RSSI( )
2
 (9) 

Where stdclb is the function computing the distance based on 

the propagation model calibrated with H-procedure, slfclbG 

provides the distance by means of the propagation model 

calibrated with G-procedure and slfclbW provides the distance 

by means of the propagation model calibrated with W-

procedure. 

In order to gather a better view of the comparison we studied 

the Probability Density Function (PDF) of !G and !W the 

errors. Based on the set of all the RSSI measured between the 

communications from anchors to mobile, produced during the 

second phase of the measuring campaign, we estimated the 

PDF error as the frequency of the error affecting the estimated 

distance. In the next subsection we present the setup of our 

experiment and the results of the comparison between our 

techniques. 

A. Experimental setup 

We performed the experiments in our laboratory. It is a typical 

office environment with an area of approximately 7m by 11m. 

It has desks, chairs, cabinets, computers, monitors, etc. This 

environment is harsh for wireless communication due to 

multi-path reflections from walls and the possibility of 

interference from electronic devices. Figure 1 shows the 

layout of the laboratory and the deployment of the anchors in 

the rooms. 

For the experiments we used a Sensor Network of 7 MicaZ 

[12] which uses the Chipcom CC2420 radio subsystem 

implementing the IEEE 802.15.4 standard. The experiments 

consist in a set of measures between a pair of anchors or 

between an anchor and a point of the grid (in case of ad-hoc 

calibration). Each measure collects 300 RSSIs, where every 

RSSI is averaged over a set of 100 samples. Each sample is 

obtained exchanging a beacon packet between two sensors 

every 1/32 second, using the highest transmission power of the 

MicaZ. 

TABLE I 

PARAMETERS AND PERFORMANCE COMPARISON AMONG 

PROCEDURES 

 
G-procedure W-procedure H-procedure 

# 1.45 1.45 1.46 

l1 -8.96 -8.33 -8.21 

l2 -8.96 -7.30 -6.40 



As mentioned in Section IV the l0 parameter can be estimated 

a priori as the path loss at a reference distance. To this 

purpose we preliminary evaluated l0 measuring the RSSI 

between two anchors deployed at 1 meter distance, obtaining 

l0 = !10.06. 

We preliminary executed the H-procedure to obtain the 

reference parameters of the propagation model to be used for 

the comparison with G-procedure and W-procedure 

techniques. In particular we estimated ! = 1.46, l1 = !8.21dB, 

l2 = !6.4dB. The parameters obtained with all the calibration 

methods are shown in Table I. 

During our experiments we observed the typical features of 

radio channels [13]: Asymmetrical links (the connectivity from 

node A to node B might be different than that from node B to 

node A), Non-isotropic connectivity (the connectivity is not 

necessarily the same in all the directions from the source), and 

Non-monotonic distance decay (nodes that are far away from 

the source may have better connectivity than nodes that are 

closer). Note that non-monotonic distance decay is the main 

cause of localization error. 

B. Global virtual calibration performance 

With Global virtual calibration (G-procedure) the estimated 

parameters are " = 1.45 and l1 = l2 = lw = !8.96dB. Figure 2 

shows the results obtained in a single room, without the 

attenuation introduced by the walls (WAF = 0). In particular, 

Figure 2 shows the received power measured from the mobile. 

The dotted line is the H-procedure, and the solid line is G-

procedure. As we can see from the figure, the two lines are 

practically overlapped due to the optimal fit of both lines, with 

the real path loss exponent. Consequently, the error of G-

procedure with respect to the H-procedure !G is negligible.  

Figure 3 shows the PDF of !G for measures obtained in the 

whole environment (WAF!0). In this case the error is less then 

1.5m in the 90% of the cases. This result is due to the fact that 

the attenuation factor of both walls has been forced to be the 

same. 

Consider that, from the measures in our environment, the H-

procedure is affected by an error of about 1.5m. Thus, the 

error of 1.5m of the G-procedure with respect to the H-

procedure can be considered acceptable since it fits the highest 

precision achievable in our environment. 

 

C. Per-wall virtual calibration performance  

With W-procedure the estimated parameters are "= 1.45, 

l1=!8.33dB, and l2=!7.3dB. The main difficulty for this 

calibration method is due to the different number of sample 

used to estimate the single wall attenuation. In our case we 

have 5 anchors to estimate the first wall and other 3 anchors 

for the second one. Therefore, in order to resolve the Equation 

(7) with the least mean square estimator, we weigh the WAF  

parameters with a number directly proportional to the number 

of established links between pairs of anchors and inversely 

proportional to the number of anchors. 

Figure 4 shows the PDF of !W. It is seen that virtual 

calibration of individual walls improves the performance of 

virtual calibration; in particular comparing the W-procedure 

with the H-procedure we observed an error less than 1.5m in 

the 98% of the cases. This is a significant improvement over 

G-procedure. Table II summarize the results obtained showing 

the Cumulative Distribution Function (CDF) of !G and !W. 

This table highlight that the W-procedure increase the 

performance with respect to the G-procedure. Not surprisingly, 

the W-procedure outperforms the G-procedure, due to the 

better accuracy in the walls modeling. 

To measure the performance of the two virtual calibration 

procedure (G-procedure and W-procedure) with respect to the H-

procedure we evaluated the localization error. The metric 

chosen to measure the performance considers the localization 

error between our novel calibration procedure and the 

conventional H-procedure with a fixed localization algorithm. 
The localization algorithm selected is based on the RF map of 
the area. The RF map is a database containing the estimated 
receiver power from each anchors for each point (x, y) 
positioned over a regular grid. The RF map covers the entire 
area and it has been generated using the estimated parameters 
for each virtual calibration procedure. The RSSIs measured by 

TABLE II 

CDF OF THE ERRORS 

Error [m] CDF of !G CDF of !W 

0.25 0.604 0.896 

0.5 0.732 0.919 

1 0.868 0.973 

1.5 0.901 0.984 
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Fig. 2.  Received RSSI measured from the mobile node. 
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Fig. 3.  PDF of !G considering all the measured data. 



the mobile (received by the anchors) is compared to the data 
stored in an RF map of the area to discriminate the position of 
the mobile. 
Indicating with w = (w1,w2 ...wn) the vector of the measured 
power, it is compared to the stored power vectors W(i,j) = 
(W(i,j)1,W(i,j)2 ... W(i,j)n),  for each (i,j) contained in the 
RF map. The vector W(i,j) contains the estimated powers we 
aspect to received (in respect to the  signal propagation model 
chosen) on the (xi, yj) point from the anchors. 
The point on the RF map resulting in the minimum distance 
from w is selected as the position of the mobile. From the 
work in [7], the Euclidean metric gives better results with 
respect to the other methods. Considering that the mobile is 
positioned in the (xi, yj ) point of the RF map, the definition of 

our localization results in (i,j)=arg{min(h,k)!NxM!w–W(h,k)!2}, 

where N is the set {1,2 ... n} with n the number of rows, and 
M is the set {1,2 ... m} with m the number of columns. 

Figure 5 shows the Cumulative Distribution Function 

obtained by using the above mentioned localization algorithm 

for each calibration procedure.  

Other localization algorithms based on RF map can be used to 

localize the mobile node. We fixed a simple localization 

algorithm to demonstrate that our virtual calibration procedure 

performs mostly like other ad-hoc calibration procedures which 

requires a measurement campaigns that are time consuming 

and in general expensive. 

As depicted in Figure 5 the G-procedure performs like the 

commonly used H-procedure, in terms of localization error. In 

fact, it is worth to note that, the CFD of the W-procedure is 

identical to the H-procedure one, thus it is mostly hidden in 

the graph. This means that virtual calibration procedure results 

in the same localization error like the expensive ad-hoc 

calibration procedure. 

VI. CONCLUSIONS 

We proposed a virtual calibration procedure for localization 

that only exploits RSSI measurements between pairs of 

anchors. In particular, we propose two heuristics for virtual 

calibration and evaluate their performance with respect to 

fingerprinting in indoor environments with IEEE 802.15.4 

sensor network. We showed that the performance of virtual 

calibration, in terms of accuracy of the estimated distances, is 

close to that achievable with more expensive fingerprinting. 

The proposed method is thus a viable alternative to simplify 

the calibration of a localization system. 
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Fig. 4.  PDF of !W considering all the measured data. 
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Fig. 5.  Localization error using the Euclidean metric with the H, G, and W-
procedures. 


